Qualifications: Habilitation Thesis Faculty of Sciences of Tunis Tunisia Mathematics Ph.D Faculty of Sciences of Tunis Tunisia Mathematics Master’s Degree Faculty of Sciences of Tunis Tunisia Mathematics Bachelor’s Degree Mathematics
S. Omri andL. T. Rachdi, An Lp-Lq version of Morgan's theorem associated with Riemann-Liouville transform, Int. J. Math. Anal., Vol.1, no17 (2007),805-824.
S. Omri andL. T. Rachdi , Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville operator, J. Inequal. Pure Appl. Math., Vol.9 (2008), Issue 3, Article88.
C. Baccar, S. Omri andL. T. Rachdi, Fock spaces associated withthe spherical mean operator, Mediterr. J. Math, Vol.6 (2009), 1-25.
S. Omri andL. T. Rachdi , Weierstrass transform associated with the Hankel operator, Bull. Math. Anal. Appl., Vol 1, Issue 2 (2009),1-16.
S. Omri, Local Uncertainty principle for the Hankel transform, Integral Transforms Spec. Funct., Vol 21, no 9 (2011),703-712.
S. Omri, Logarithmic uncertainty principle for the Hankel transform, Integral Transforms Spec. Funct., Vol. 22 (2011), No. 9,655–670.
S. Omri, Uncertainty principle in terms of entropy for thespherical mean operator, J. Math. Ineq., 5 (2011), Issue 4, 473 –490.
K. Hleili, S. Omri andL. T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo, Vol.13 (2011), No 03,91–115.
K. Hleili, S. Omri andL. T. Rachdi, Harmonic analysis anduncertainty principle for integral transforms generalizing the spherical mean operator, Bull. Math. Anal. Appl., Vol. 4 (2012), Issue 1, 29 –61.
K. Hleili andS. Omri, The Littlewood-Paley g-function associated with the sphericalmeanoperator,Mediterr. J. Math, 10(2013), 887–907.
R. Daher, A. Khadari andS. Omri, Uncertainty principle for the spherical mean operator,J. Math. Ineq. Vol. 8(2014), n° 3, 475 –487.
S. Ghobber andS. Omri, Time–frequency concentration of the windowed Hankel transform,Integral Transforms Spec. Funct., Vol. 25(2014), no. 6, 481 –496.
K. Hleili andS . Omri, An Lp–Lqversion of Miyachi’s theorem forthe Riemann Liouville operator,Indian J. Pure Appl. Math,Vol 46(2015), no 2, 121-138.
H. Lamouchi andS. Omri, Time-frequency localization for the short timeFourier transform,Integral Transforms Spec. Funct., Vol. 27(2016), no. 1, 43–54.
H. Lamouchi, B. Majjaouli andS. Omri, Localization of Orthonormal Sequences in the Spherical Mean Setting, Mediterr. J. Math, Vol 13(2016), Issue4, 1855–1870.
A. Hammami andS. Omri, Lp-Boundedness of the Littlewood–Paley g -function associated with the spherical mean operator for 1 < p < +∞,Mediterr. J. Math, Vol 13(2016), Issue6, 4333–4352.
H. Lamouchi andS. Omri, Quantitative uncertainty principles for the short time Fourier transform and the radar ambiguity function, Indian J. Pure Appl. Math., 48(2017), no 1, 147-161,.
B. Majjaouli andS. Omri, Estimate of the Fourier multipliers in the spherical mean setting,J. Pseudo-Differ. Oper. Appl. Vol 8(2017), Issue3, 533-549.
N. B. Hamadi andS. Omri, Uncertainty principles for the continuous wavelettransform in the Hankel setting, App. Anal, Vol 97 (2018), Issue 4, 513-527.
C. Baccar, N. Ben Hamadi and S. Omri, Fourier multipliers associated with singular partial differential operators,Operators and Matrices, Vol 11(2017), Number 1, 37-53.
B. Majjaouli andS. Omri, Maximal Operators in the Spherical Mean Setting,Mediterr. J. Math. June 2017, 14:105.(Doi : 10.1007/s00009-017-0903-0).
H. Majjaoli andS. Omri, Boundedness and compactness of Riemann-Liouville two-wavelet multipliers,J. Pseudo-Differ. Oper. Appl, Vol 9 (2018), Issue 2, 189-213.
H. Majjaoli andS. Omri, Time–frequency analysis associated with Some Partial Differential Operators, Mediterr. J. Math.(2018) 15 : 161.(DOI: 10.1007/s00009-018-1198-5)
N. B. Hamadi , H. Majjaoli and S. Omri, Localization Operators, Time Frequency Concentration and Quantitative Type Uncertainty for the Continuous Wavelet Transform Associated with Spherical Mean Operator, International Journal of Wavelets, Multiresolution and Information Processing, Vol. 17(2019), No. 04, 1950022.25).
H. Majjaoli and S. Omri, Spectral theorems associated with the directional short-time Fourier transform, J. Pseudo-Differ. Oper. Appl(2019), pp 1-40.26).
S. Hkimi, S. Ghobber and S. Omri,Spectrograms and time-frequency localized functions in the Hankel setting, Operators and Matrices, Vol 13(2019), Number 2, 507-525.
General Algebra
Linear Algebra
Reduction Theory
Euclidean Spaces
Hermitian Spaces
Theory of Ordinary Differential *Equation
Complex Analysis
Multivariable Analysis
Real Analysis
Topology
Fourier Analysis
Integration Theory *Special Functions Theory *Group Theory